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Abstract. Starting with infinitely many supercompact cardinals, we show
that the tree property at every cardinal ℵn, 1 < n < ω, is consistent with an
arbitrary continuum function below ℵω which satisfies 2ℵn > ℵn+1, n < ω.
Thus the tree property has no provable effect on the continuum function
below ℵω except for the restriction that the tree property at κ++ implies
2κ > κ+ for every infinite κ.
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1 Introduction

Recall that the continuum function is the function which maps an infinite cardinal κ
to 2κ. It is well known that at regular cardinals the continuum function is very easily
changed by forcing, as was shown by Easton [8]. The case of singular cardinals, or
regular limit cardinals whose “largeness” we wish to preserve, is more difficult and
gave rise to several results which generalize Easton’s theorem in this direction (see for
instance [19], [10], [3] or [4]).

In this paper we study yet another generalization of Easton’s theorem in which we
require that some successor cardinals should retain their largeness in terms of a certain
compactness property. If λ is a regular uncountable cardinal, we say that λ has the tree
property, and we denote it by TP(λ), if all λ-trees have a cofinal branch. It is known
that if the tree property holds at κ++, then 2κ > κ+. In other words the tree property
has a non-trivial effect on the continuum function. It seems natural to ask whether the
tree property at κ++ puts more restrictions on the continuum function in addition to
2κ > κ+ (and the usual restrictions which the continuum function needs to satisfy); or
equivalently, which continuum functions are compatible with the tree property. Since
it is still open how to get the tree property at a long interval of cardinals (for more
information see [21]), any Easton’s theorem for the tree property is at the moment
limited to countable intervals of cardinals.

As should be expected, the difficulty of this question increases if we wish to have (A)
the tree property at consecutive cardinals or (B) at cardinals which are the successors
or double successors of singular cardinals. We deal with the type (A) in this paper.

The first partial answer to (A) was given by Unger ([22]) who showed that the
tree property at ℵ2 is consistent with 2ℵ0 arbitrarily large.1 We generalized this result
in [14] for all cardinals below ℵω for the weak tree property (no special Aronszajn
trees) and for all even cardinals ℵ2n for the full tree property. The argument used
infinitely many weakly compact cardinals which is optimal for the result. In [14],
we left open the natural question whether having the tree property at every ℵn for
2 ≤ n < ω is consistent with any continuum function which violates GCH below ℵω.
Unlike the argument in [14], this requires much larger cardinals because it is known
that consecutive cardinals with the tree property imply the consistency of at least a
Woodin cardinal (see [9]). In this paper we provide the affirmative answer to this
question, i.e. we show that if there are infinitely many supercompact cardinals, then it
is consistent that the tree property holds at every ℵn for 2 ≤ n < ω, and the continuum
function below ℵω is anything not outright inconsistent with the tree property.2

The argument is based on the construction in the paper by Cummings and Foreman
[6], extended to obtain the right continuum function. We outline the argument in
Section 1.1.

Although it is not the focus of this paper, let us say a few words about the type

1The result can be easily generalized to an arbitrary regular cardinal κ with the tree property at
κ++.

2There is nothing specific about the ℵn’s; the final consecutive sequence 〈κn |n < ω〉 of regular
cardinals with the tree property can live much higher.



Easton’s theorem for the tree property below ℵω 3

(B). We showed in [13] that the tree property at the double successor of a singular
strong limit cardinal κ with countable cofinality does not put any restrictions on the
value of 2κ apart from the trivial ones.3 In [12] we followed up with the result that
2ℵω can be equal to ℵω+2+n for any n < ω with the tree property holding at ℵω+2.

1.1 An outline of the argument

Let us briefly outline the structure of the argument for a reader roughly familiar with
the papers of Abraham [1] and Cummings and Foreman [6]. Let κn, 1 < n < ω, be
an increasing sequence of supercompact cardinals with κ0 = ℵ0 and κ1 = ℵ1. For
forcing the tree property at κ = κn+2 for n ≥ 1 over some model Vn−1, we are going
to use a variant of the Mitchell forcing as it was defined in [6]; this forcing contains
the Cohen forcing at κn. If we define this Cohen forcing in Vn−1, Vn−1 must satisfy
κ<κnn = κn otherwise some cardinals above κn will be unintentionally collapsed. κn is
either ω1 or an inaccessible cardinal in the ground model V , but in either case it will
be a successor cardinal in Vn−1, in fact it will be the successor of κn−1 (more to the
point, it will be the ℵn of Vn−1). It follows that for forcing the tree property at κ over
Vn−1, the Cohen forcing at κn must come from a model where 2κn−1 ≤ κn. Since by
the inductive construction for the tree property we will necessarily have 2κn−1 > κn in
Vn−1, the Cohen forcing cannot come from Vn−1, but should come from some earlier
model.4 Cummings and Foreman solved this problem by postulating the the Cohen
forcing at κn comes from the model Vn−2, which works provided that 2κn−1 = κn in
Vn−2. Unless we manipulate the continuum function further, this will leave us with
gap 2 below ℵω: 2ℵn = ℵn+2 for all n < ω.

In order to realize an arbitrary Easton function below ℵω (which satisfies 2ℵn ≥
ℵn+2 for all n < ω) we need to modify the construction of Cummings and Foreman
in some way. There seem to be essentially two options: (i) modify the construction
in Cummings and Foreman directly and add the required number of subsets of κn
by a Cohen forcing which lives in Vn−2, or in some earlier model, perhaps even the
ground model V , or (ii) leave the inductive construction for the tree property as it is in
Cummings and Foreman (which gives gap 2 for the continuum function) and increase
the powersets as required in the next step.

The option (i) mays seem cleaner at the first sight, but it causes technical com-
plications5 because both tasks – ensuring the tree property and the right continuum
function – are mixed into a single iteration. The option (ii) deals with the two tasks

3An easier proof of this theorem can be found in [15]; the proof is based on an application of the
indestructibility of the tree property under certain κ+-cc forcing notions. The advantage of the new
proof is that it can be directly generalized to singular cardinals with an uncountable cofinality (it does
not use any of the properties of the Prikry-type forcing notions except the chain condition).

4We should add that this implies that the Cohen forcing will no longer be κn-closed in Vn−1 so an
additional argument must be provided for not collapsing below κn.

5Roughly speaking, it is hard to argue for the distributivity of the tail of the Mitchell iteration (i.e.
a tail of Rω in (1.1)). In option (ii), the distributivity is ensured by closure in a suitable submodel
(essentially an application of Easton’s lemma).



4 Šárka Stejskalová

separately, but one needs to make sure that forcing the right continuum function does
not “undo” the tree property part.

We have opted for the option (ii) and defined a certain forcing Z so that

(1.1) Z = Rω ∗ Ė,

where Rω is exactly the forcing from Cummings and Foreman paper and Ė is a full-
support product of Cohen forcings to obtain the desired continuum function. The
Cohen forcings in Ė are chosen from appropriate inner models of the extension V [Rω]
in order to satisfy the restrictions described in previous paragraphs (more precisely,
the Cohen forcing at some κn in Ė comes from the same inner model as the Cohen at
κn which is the part of the Mitchell forcing in the iteration Rω).

The present paper is structured as follows. In Section 2 we provide some back-
ground information to make the paper self-contained. First we review some basic
forcing properties which deal with the interactions of the chain condition and the
closure between different models (Section 2.1), then we discuss forcing conditions for
not adding cofinal branches to certain trees (Section 2.2), and finally we review the
Mitchell forcing and the argument of Cummings and Foreman from [6].

In Section 3 we prove our theorem. The argument is divided into two sections:
In Section 3.2 we show that the forcing Z collapses only the intended cardinals and
moreover forces the right continuum function. In Section 3.3 we show that Z forces
the tree property at every ℵn, 2 ≤ n < ω, which finishes the argument.

In the final section we discuss open questions and further research.

2 Preliminaries

2.1 Some basic properties of forcing notions

In this section we review some basic properties which we will use later in the paper.

Definition 2.1 Let P be a forcing notion and let κ > ℵ0 be a regular cardinal. We
say that P is:

• κ-cc if every antichain of P has size less than κ (we say that P is ccc if it is
ℵ1-cc).

• κ-Knaster if for every X ⊆ P with |X| = κ there is Y ⊆ X, such that |Y | = κ
and all elements of Y are pairwise compatible.

• κ-closed if every decreasing sequence of conditions in P of size less than κ has a
lower bound.

• κ-distributive if P does not add new sequences of ordinals of length less than κ.
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It is easy to check that all these properties – except for the κ-closure – are invariant
under forcing equivalence6. Regarding the closure, note that for every non-trivial
forcing notion P which is κ-closed there exists a forcing-equivalent forcing notion which
is not even ℵ1-closed (e.g. the Boolean completion of P ).

Lemma 2.2 Let κ > ℵ0 be a regular cardinal and assume that P is a forcing notion
and Q̇ is a P -name for a forcing notion. Then the following hold:

(i) P is κ-closed and P forces Q̇ is κ-closed if and only if P ∗ Q̇ is κ-closed.
(ii) P is κ-distributive and P forces Q̇ is κ-distributive if and only if P ∗ Q̇ is κ-

distributive.
(iii) P is κ-cc and P forces Q̇ is κ-cc if and only if P ∗ Q̇ is κ-cc.
(iv) If P is κ-Knaster and P forces Q̇ κ-Knaster then P ∗ Q̇ is κ-Knaster

Proof. The proofs are routine; for more details see [16] or [18]. �

If Q is in the ground model, P ∗Q̌ is equivalent to P ×Q. We state some properties
which the product forcing has with respect to the chain condition.

Lemma 2.3 Let κ > ℵ0 be a regular cardinal and assume that P and Q are forcing
notions. Then the following hold:

(i) If P and Q are κ-Knaster, then P ×Q is κ-Knaster.
(ii) If P is κ-Knaster and Q is κ-cc, then P ×Q is κ-cc.

Proof. The proofs are routine. �

The following lemma summarises some of the more important forcing properties of
a product P ×Q regarding the chain condition.

Lemma 2.4 Let κ > ℵ0 be a regular cardinal and assume that P and Q are forcing
notions such that P is κ-Knaster and Q is κ-cc. Then the following hold:

(i) P forces that Q is κ-cc.
(ii) Q forces that P is κ-Knaster.

Proof. (i). This is an easy consequence of Lemmas 2.2(iii) and 2.3(ii).
(ii). A proof (attributed to Magidor) can be found in [5]. �

The following lemma summarises some of the more important properties of the
product P ×Q regarding the distributivity and closure.

Lemma 2.5 Let κ > ℵ0 be a regular cardinal and assume that P and Q are forcing
notions, where P is κ-closed and Q is κ-distributive. Then the following hold:

(i) P forces that Q is κ-distributive.

6We say that (P,≤P ) and (Q,≤Q) are forcing equivalent if their Boolean completions are isomor-
phic.
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(ii) Q forces that P is κ-closed.

Proof. The proof is routine. �

We can also formulate some results for the product of two forcing notions with
respect to preservation of the chain condition and distributivity at the same time. The
following lemma appeared in [8].

Lemma 2.6 (Easton) Let κ > ℵ0 be a regular cardinal and assume that P and Q are
forcing notions, where P is κ-cc and Q is κ-closed. Then the following hold:

(i) P forces that Q is κ-distributive.
(ii) Q forces that P is κ-cc.

Proof. For the proof of (i), see [16, Lemma 15.19], (ii) is easy. �

2.2 Trees and forcing

An essential step in standard arguments that a certain partial order forces the tree
property is to argue that its quotient does not add cofinal branches to certain trees.
Fact 2.7 is due to Baumgartner (see [2]) and Fact 2.8 is due to Silver (see [1] for more
details; a proof with λ = ℵ0 is in [18, Chapter VIII, Section 3]) .

Fact 2.7 Let κ be a regular cardinal and assume that P is a κ-Knaster forcing notion.
If T is a tree of height κ, then forcing with P does not add cofinal branches to T .

Fact 2.8 Let κ, λ be regular cardinals and 2κ ≥ λ. Assume that P is a κ+-closed
forcing notion. If T is a λ-tree, then forcing with P does not add cofinal branches to
T .

These facts can be generalized as follows (for the first fact see [23]; the first state-
ment of the second fact appeared in [17] with κ = ℵ0 and λ = ℵ1, the general version
is due to Unger in [22]).

Fact 2.9 Let κ be a regular cardinal and assume that P is a forcing notion such that
square of P , P × P , is κ-cc. If T is a tree of height κ, then forcing with P does not
add cofinal branches to T .

Fact 2.10 Let κ < λ be regular cardinals and 2κ ≥ λ. Assume that P and Q are
forcing notions such that P is κ+-cc and Q is κ+-closed. If T is a λ-tree in V [P ], then
forcing with Q over V [P ] does not add cofinal branches to T .
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2.3 Mitchell forcing

Mitchell forcing was defined by Mitchell in [20]. In this section we review several
variants of the Mitchell forcing, which can be found in papers [1] and [6]. All proofs
of facts stated below can be found in these papers as well. If κ is a regular cardinal
and α a limit ordinal, let Add(κ, α) be the set of all partial functions of size < κ
from SuccOrd(α) to 2, ordered by reverse inclusion, where SuccOrd(α) is the set of
all successor ordinals below α.7 It is easy to see that this forcing is isomorphic to the
usual Cohen forcing for adding α-many subsets of κ. It follows that if β < α and
p ∈ Add(κ, α), then p�β is in Add(κ, β).

Definition 2.11 Let κ be a regular cardinal and λ > κ an inaccessible cardinal. The
Mitchell forcing at κ of length λ, denoted by M(κ, λ), is the set of all pairs (p, q) such
that p is in Cohen forcing Add(κ, λ) and q is a function with dom(q) ⊆ λ of size at
most κ and for every α ∈ dom(q), α is a successor cardinal and it holds:

(2.2) 1Add(κ,α)  q(α) ∈ ˙Add(κ+, 1),

where ˙Add(κ+, 1) is the canonical Add(κ, α)-name for Cohen forcing at κ+. A condi-
tion (p, q) is stronger than (p′, q′) if

(i) p ≤ p′,
(ii) dom(q) ⊇ dom(q′) and for every α ∈ dom(q′), p�α  q(α) ≤ q′(α).

Assuming that κ < λ, κ is regular, and λ is inaccessible, Mitchell forcing M(κ, λ)
is λ-Knaster and κ-closed. Moreover if κ<κ = κ, M(κ, λ) preserves κ+ (by a product
analysis of Abraham [1]), collapses cardinals exactly in the open interval (κ+, λ) and
forces 2κ = λ = κ++.

Theorem 2.12 (Mitchell) Assume κ<κ = κ. If λ is a weakly compact cardinal, then
M(κ, λ) forces the tree property at λ = κ++.

We modify the definition of Mitchell forcing in two steps. In the first step we define
the variation of Mitchell forcing where the Cohen part of Mitchell forcing is taken from
some suitable inner model of our universe. In the second step we add a third coordinate
which will prepare the universe for a further lifting of an appropriate embedding.

Definition 2.13 Let V ⊆ W be two inner models of ZFC with the same ordinals, κ
be a regular cardinal and λ > κ inaccessible in W . Suppose that Add(κ, λ)V is in
W κ+-cc and κ-distributive. In W , the Mitchell forcing at κ of length λ, denoted by
M(κ, λ, V,W ), is the set of all pairs (p, q), where p is a condition in Add(κ, λ)V and q
is a function in W such that dom(q) is a subset of open interval (κ, λ) of size at most
κ and for every α ∈ dom(q), α is a successor cardinal and the following holds:

(2.3) 1Add(κ,α)V W q(α) ∈ ˙Add(κ+, 1)W ,

7This is just a technical assumption which will be useful in analysis of Mitchell forcing. See
paragraph below Remark 2.16.
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where ˙Add(κ+, 1)W is Add(κ, α)V -name for the Cohen forcing at κ+ over the model
W . The ordering is defined by (p, q) ≤ (p′, q′) if

(i) p ≤ p′,
(ii) dom(q) ⊇ dom(q′) and for every α ∈ dom(q′), p�α  q(α) ≤ q′(α).

Now we review the original forcing which iteration was used to force the tree
property below ℵω. For more details see [6] and [1].

Fact 2.14 Let λ be a supercompact cardinal. Then there is a function F from λ to
Vλ such that for all µ ≥ λ and all x ∈ Hµ+ there is a supercompactness measure U on
Pλ(µ) such that jU (F )(λ) = x. We call F a Laver function for λ.

Let Fλ : λ→ Vλ denote a Laver function from previous fact for a given supercom-
pact cardinal λ.

Definition 2.15 Let V ⊆ W be two inner models of ZFC with the same cardinals, κ
be a regular cardinal and λ > κ supercompact in W . Suppose that Add(κ, λ)V is κ+-cc
and κ-distributive in W . The forcing R(κ, λ, V,W,Fλ) is the set of all triples (p, q, f)
such that (p, q) is in the Mitchell forcing M(κ, λ, V,W ) and f is a function in W of
size less than κ+ such that dom(f) is a subset of

(2.4) {α < λ | α inaccessible and 1R|α W Fλ(α) is an α-directed closed forcing},

and if α ∈ dom(f) then f(α) ∈WR|α and 1R|α W f(α) ∈ Fλ(α).

The ordering is defined by (p, q, f) ≤ (p′, q′, f ′) if

(i) (p, q) ≤ (p′, q′),
(ii) dom(f) ⊇ dom(f ′) and for every α ∈ dom(f ′), (p�α, q �α, f �α)  f(α) ≤ f ′(α).

Note that the previous definition should be formally defined by induction on λ, for
more details see [6]. Also note that the definition is made in the model W and all what
we are state in further is in sense of the model W .

Mitchell forcing R(κ, λ, V,W,Fλ) is λ-Knaster and κ-distributive. Moreover, it
collapses the cardinals in the open interval (κ+, λ) to κ+ and forces 2κ = λ = κ++.
The preservation of κ+ is shown by means of the product analysis due to Abraham [1].

Let T be defined as follows:

(2.5) T = {(∅, q, f) | (∅, q, f) ∈ R(κ, λ, V,W,Fλ)}.

The ordering on T is the one induced from R(κ, λ, V,W,Fλ). It is clear that T is κ+-
directed closed in W . We will call T the term forcing (of the associated Mitchell-style
forcing).

It is easy to see that the function

(2.6) π : Add(κ, λ)V × T→ R(κ, λ, V,W,Fλ)
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which maps (p, (∅, q, f)) to (p, q, f) is a projection. Since the product Add(κ, λ)V × T
preserves κ+ (under assumption κ<κ = κ), so does the forcing R(κ, λ, V,W,Fλ).

There are natural projections from Mitchell forcing of length λ to Mitchell forcings
of shorter lengths and a projection to Cohen forcing Add(κ, λ)V . For the first claim,
define a function σλ,α from R(κ, λ, V,W,Fλ) to R(κ, α, V,W,Fλ), where α is an ordinal
between κ and λ, as follows: σλ,α((p, q, f)) = (p �α, q �α, f �α). For the second claim,
define a function ρ from R(κ, λ, V,W,Fλ) to Add(κ, λ)V by ρ((p, q, f)) = p. It is easy
to see that σλ,α and ρ are projections.

By the projection ρ : R(κ, λ, V,W,Fλ) → Add(κ, λ)V , R(κ, λ, V,W,Fλ) is forcing-
equivalent to Add(κ, λ)V ∗ Ḋ, for some Ḋ. Moreover, by the product analysis (i.e. of
the existence of the projection π), Ḋ is a name for a forcing notion which is forced to
be κ+-distributive and κ-closed.

Remark 2.16 Notice that the term forcing T collapses the cardinals between κ+ and
λ: Suppose κ<κ = κ and λ is inaccessible. As T is κ+-closed, Cohen forcing Add(κ, λ)
is still κ+-cc and κ-closed in V [T]. In particular, it does not collapse cardinals over
V [T] (so it must be T which collapses the cardinals).

The term forcing analysis carries over to quotients given by the projections σλ,α

whenever α is an inaccessible cardinal between κ and λ. First note that if α is inac-
cessible then R(κ, α+ 1, V,W, Fλ) is equivalent to R(κ, α, V,W,Fλ) ∗F (α). This holds
because at limit cardinals the first coordinates are not defined.

Let Gα+1 be an R(κ, α+ 1, V,W, Fλ)-generic filter and define in V [Gα+1] the quo-
tient R(κ, λ, V,W,Fλ)/Gα+1 as follows:

(2.7) R(κ, λ, V,W,Fλ)/Gα+1 =

{(p, q, f) ∈ R(κ, λ, V,W,Fλ) | (p�α, q �α, f �α+ 1) ∈ Gα+1}.

Regarding this quotient, we can now analogously define the term forcing T∗ in V [Gα+1]

(2.8) T∗ = {(∅, q, f) | (∅, q, f) ∈ R(κ, λ, V,W,Fλ)/Gα+1}.

and a projection π∗ from Add(κ, λ − α) × T∗ to R(κ, λ, V,W,Fλ)/Gα+1 by setting
π∗((p, (∅, q, f))) = (p, q, f).

Fact 2.17 Let α be inaccessible and Gα+1 an R(κ, α+1, V,W, Fλ)-generic filter. Then
in V [Gα+1] the following hold:

(i) π∗ is a projection from Add(κ, λ− α)× T∗ to R(κ, λ, V,W,Fλ)/Gα+1.
(ii) T∗ is κ+-closed in V [Gα+1].

At the end of the analysis, consider the quotient of Add(κ, λ)×T after the forcing
R(κ, λ, V,W,Fλ). Let G be R(κ, λ, V,W,Fλ)-generic. We define

(2.9) S = (Add(κ, λ)× T)/G = {(p, (∅, q, f)) ∈ Add(κ, λ)× T | (p, q, f) ∈ G}.
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Fact 2.18 S is κ-closed, κ+-distributive and λ-cc over V [R].

The following lemma summarises properties which are preserved after forcing with
a product of a Mitchell-style forcing and another forcing.

Lemma 2.19 Let V ⊆ W be two inner models of ZFC with the same cardinals, κ be
a regular cardinal and λ > κ supercompact in W . Suppose that Add(κ, λ)V is κ+-
Knaster and κ-distributive in W . Assume P is κ+-Knaster, R is κ+-cc and Q and S
are κ+-closed in W . Then the following hold:

(i) R× R(κ, λ, V,W,Fλ) forces that Q is κ+-distributive.
(ii) Q× R(κ, λ, V,W,Fλ) forces that R is κ+-cc.

(iii) P × R(κ, λ, V,W,Fλ) forces that R is κ+-cc.
(iv) Q× R(κ, λ, V,W,Fλ) forces that S is κ+-distributive.

Proof. (i). It is easy to check that the projection π in (2.6) extends to the projection
π′,

(2.10) π′ : R×Q×Add(κ, λ)× T→ R×Q× R(κ, λ, V,W,Fλ),

which sends (r1, r2, p, (∅, q, f)) to (r1, r2, (p, q, f)). It follows thatR×Q×Add(κ, λ)V×T
is forcing equivalent to

(2.11) [R×Q× R(κ, λ, V,W,Fλ)] ∗ Ṡ

for some quotient forcing Ṡ.

Let G × g × F be an arbitrary R × R(κ, λ, V,W,Fλ) × Q-generic filter over W .
We will show that every sequence x of ordinals of length less than κ+ which is in
V [G × g × F ] is in V [G × g] which shows that Q is forced to be κ+-distributive as
required. Let x as above be fixed. Let h be any Ṡ-generic filter over V [G × g × F ].
It follows by (2.11) that V [G× g × F ][h] can be written as V [G× g0 × g1 × F ] where
g0 × g1 is Add(κ, λ)V × T-generic, and the following hold:

(i) V [G× g × F ] ⊆ V [G× g0 × g1 × F ],
(ii) V [G× g0] ⊆ V [G× g],

where (ii) holds because g0 is the Cohen part of g. In particular x is in V [G×g0×g1×F ].

By Easton’s lemma, R × Add(κ, λ)V (which is κ+-cc) forces that T×Q (which is
κ+-closed) is κ+-distributive. It follows that x is already in V [G × g0], and hence in
V [G× g] as desired.

(ii) – (iv). It suffices to argue similarly as in (i) that the forcing notion under
consideration has the required property in the generic extension by Q×Add(κ, λ)V ×T
for (ii) and (iv), and P×Add(κ, λ)V ×T for (iii). This is easy to show using the Easton’s
lemma (Lemma 2.6). �
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2.4 The Cummings-Foreman model

Let κ2 < κ3 < . . . be an ω-sequence of supercompact cardinals with limit λ and let
κ0 denote ℵ0 and κ1 denote ℵ1. And let Fn denote corresponding Laver function for
κn for n > 1. Now we define Cummings-Foreman forcing used in [6] to force the tree
property below ℵω. We also state some basic facts about this forcing which can be
found in [6].

Definition 2.20 The iteration Rω = 〈Rn ∗ Q̇n |n < ω〉 of length ω is defined by
induction as follows:

(i) The first stage Q0 = R(κ0, κ2, V, V, F2), let us denote R1 = Q0 and R0 be the
trivial forcing.

(ii) Suppose that we have defined the iteration up to stage n > 0. Let Rn = Q0 ∗
· · · ∗ Q̇n−1. First define an Rn-name Ḟn+2 by Ḟn+2(α) = Fn+2(α), if Fn+2(α)
is an Rn-name, and Ḟn+2(α) = 0 otherwise. Then define Q̇n to be a name for
R(κn, κn+2, V [Rn−1], V [Rn], F ∗n+2), where F ∗n+2 is the interpretation of Ḟn+2 in
V [Rn].

Let Rω denote the inverse limit of 〈Rn |n < ω〉.

Let us for n < ω fix the following notation corresponding to the analysis in the
previous section. Let Tn, Dn and Sn be the relevant partial orders and πn, ρn and
σκn+2,α the projections, where α is an ordinal between κn and κn+2.

For the proofs of the following facts see corresponding lemmas in [6] (Lemma 4.2,
Lemma 4.3 and Lemma 4.4).

Fact 2.21 Let P0 denote Add(κ0, κ2) and T0 denote the term forcing of by Q0 =
R(κ0, κ2, V, V, F2). Then the following hold:

(i) The size of Q0 is κ2 and Q0 is κ2-Knaster.
(ii) π0 is a projection from P0 × T0 to Q0 and ρ0 is a projection from Q0 to P0.

(iii) Q0 forces 2ℵ0 = κ2 = ℵ2.
(iv) Add(κ1, ξ)

V is κ1-distributive and κ2-Knaster after forcing with Q0 for a suitable
ordinal ξ > 0.

(v) Ḋ0, given by the projection ρ0, is a P0-name for κ1-distributive and κ2-cc forcing.
(vi) Ṡ0, given by the projection π0 is a Q0-name for κ1-distributive and κ2-cc forcing.

Fact 2.22 Let n > 0 and let us denote by Pn = Add(κn, κn+2)
V [Rn−1] and Tn the term

forcing of Qn = (κn, κn+2, V [Rn−1], V [Rn], F ∗n+2). Then in V [Rn] the following hold:
(i) 2κi = κi+2 for i < n and κi = ℵi for i < n+ 2.

(ii) The size of Qn is κn+2 and Qn is κn−1-closed, κn-distributive and κn+2-Knaster.
(iii) Qn is a projection of Pn × Tn and there is also projection from Qn to Pn.
(iv) Qn forces 2κn = κn+2 = ℵn+2.
(v) Add(κn+1, ξ)

V [Rn] is κn+1-distributive and κn+2-Knaster after forcing with Qn a
suitable ordinal ξ > 0.

(vi) Ḋn, given by the projection ρn, is a Pn-name for κn-closed, κn+1-distributive and
κn+2-cc forcing.
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(vii) Ṡn, given by the projection πn is a Qn-name for κn-closed, κn+1-distributive and
κn+2-cc forcing.

Fact 2.23 Let n ≥ 0. Any κn-sequence of ordinals in V [Rω] is already added by
Rn ∗ Ṗn.

Theorem 2.24 (Cummings-Foreman) In the generic extension by Rω the following
hold:

(i) 2κn = κn+2 and κn = ℵn, for n < ω,
(ii) the tree property at κn, for 1 < n < ω.

3 Main theorem

Let κ2 < κ3 < . . . be an ω-sequence of supercompact cardinals with limit λ and let
κ0 denote ℵ0 and κ1 denote ℵ1. In Theorem 3.1, we control the continuum function
below ℵω = λ, while having the tree property at all ℵn, n > 1.

Let A denote the set {κi | i < ω}, and let e : A → A be a function which satisfies
for all α, β in A:

(i) i < j < ω → e(κi) ≤ e(κj).
(ii) e(κi) ≥ κi+2 for all i < ω.

We say that e is an Easton function on A which respects the κi’s (condition (ii)).

Theorem 3.1 Assume GCH and let 〈κi | i < ω〉, λ, and A be as above. Let e be an
Easton function on A which respects the κi’s. Then there is a forcing notion Z such
that if G is a Z-generic filter, then in V [G]:

(i) Cardinals in A are preserved, and all other cardinals below λ are collapsed; in
particular, for all n < ω, κn = ℵn,

(ii) The continuum function on A = {ℵn |n < ω} is controlled by e,i.e. ∀n < ω, 2ℵn =
e(ℵn).

(iii) The tree property holds at every ℵn, 2 ≤ n < ω.

For obtaining the model we are using the Cummings-Foreman iteration from [6]
followed by the Easton product of Cohen forcings which live in suitable inner models.

3.1 The forcing

Let e be an Easton function on A which respect the κn’s and let Rω be the forcing
from Cummings and Foreman. Our forcing Z is defined as follows:

(3.12) Z = Rω ∗
∏
n<ω

Add(κn, e(κn))V [Rn−1],

where we identify V [R−1] (for n = 0) with V .
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Let us denote this product by E and let Ė be a canonical Rω-name for it. We can
therefore write

(3.13) Z = Rω ∗ Ė.

Now we need to verify that the tree property holds in this model below ℵω and that
the continuum function is represented by e.

3.2 The right continuum function

In this section, we show that Z forces the right continuum function:

Theorem 3.2 Rω ∗ Ė forces that for all n < ω, κn = ℵn and 2κn = e(κn).

We prove the theorem in a series of lemmas. Before we begin with the analysis of
the forcing Rω ∗ Ė, let us fix some notation. For n < ω let Ṙ[n,ω) denote the canonical

Rn-name for the tail R[n,ω) of the iteration Rω. If i < n let as also denote Ṙ[i,n) the
canonical Ri-name for the iteration between i and n, R[i,n).

In V [Rω], let us denote by PE
n the Cohen forcing Add(κn, e(κn))V [Rn−1] in the

product E, n < ω. Moreover, let us denote by En the product of first n-many Cohen
forcings in E, i.e. En =

∏
i<n PE

i and analogously let E[n,ω) denote the product of the

rest of the forcing, i.e. E[n,ω) =
∏
i≥n Add(κi, e(κi))

V [Ri−1]; we have E ∼= En × E[n,ω).

Let us further define E(j,n) =
∏
j<i<n Add(κi, e(κi))

V [Ri−1] for j ≤ n and let Ėn, Ė[n,ω)

and Ė(j,n) denote the canonical Rω-name for En, E[n,ω) and E(j,n)-name, respectively.

It is easy to see that for all n < ω, Ėn+2 can be identified with an Rn-name as
all Cohen forcings in Ėn+2 live in V [Rn]. Therefore we can factor the iteration as
Rω ∗ Ė = Rn ∗ (Ėn+2 × Ṙ[n,ω)) ∗ Ė[n+2,ω) for each n < ω.

Lemma 3.3 Let n > 0. Then in V [Rn ∗ Ėn+1], the following hold:

(i) ℵi = κi for i < n+ 2;
(ii) 2κi = e(κi) for i < n+ 1.

Proof. (i). Let n > 0 be given. First recall Cummings-Foreman result that for all
1 < i < n+ 2, κi = ℵi in V [Rn], 2κi−2 = κi and GCH holds everywhere else.

We will show by induction starting with i = n and descending to 0 that for each
0 ≤ i ≤ n, the forcing E[i,n+1) behaves well over the model V [Rn] in the sense that
it does not unintentionally collapse cardinals and forces the right continuum function.
The assumptions for the induction are as follows:

(a) E[i,n+1) = PE
i × E(i,n+1) is κi−1-closed in V [Rn],

(b) PE
i is κi-distributive in V [Rn][E(i,n+1)],

(c) PE
i is κi+1-cc in V [Rn][E(i,n+1)].
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Notice that if we verify (a)–(c) for each 0 ≤ i ≤ n, then the result follows because
by stage i = 0 we have dealt with the whole forcing E[0,n+1) = En+1 (items (b) and (c)

imply that for each i, PE
i preserves cardinals over the model V [Rn][E(i,n+1)], with (a)

being a useful assumptions which keeps the induction running).
The base case is i = n, which means that PE

n should satisfy points (a)–(c) in V [Rn].
This is true by Lemma 2.5(ii), Lemma 2.19(i)(with a trivial forcing R) and Lemma
2.4(i), respectively.

For the induction step, let us assume that (a)–(c) hold for 0 < i + 1 ≤ n, and we
will verify (a)–(c) for i.

(a) It suffices to show that PE
i is κi−1-closed in V [Rn][E(i,n+1)] because by the induc-

tion assumption (a), E(i,n+1) = E[i+1,n+1) is κi-closed in V [Rn].

The forcing Rn is equal to Ri−1 ∗ Ṙ[i−1,n) and Ṙ[i−1,n) is forced to be κi−1-

distributive by Fact 2.22(ii). Therefore PE
i is κi−1-closed in V [Rn] by Lemma

2.5(ii).

(b) We wish to show that PE
i is κi-distributive in V [Rn][E(i,n+1)].

Rn can be written as

(3.14) Ri−1 ∗ Q̇i−1 ∗ Q̇i ∗ Ṙ[i+1,n).

Working in V [Ri−1], Qi−1 ∗ Q̇i is short for R(κi−1, κi+1, V [Ri−2], V [Ri−1], F ∗i+1) ∗
R(κi, κi+2, V [Ri−1], V [Ri], F ∗i+2) and this forcing is forcing equivalent to

(3.15) (R(κi−1, κi+1, V [Ri−2], V [Ri−1], F ∗i+1)× Pi) ∗ Ḋi

where Ḋi is forced to be κi-closed after R(κi−1, κi+1, V [Ri−2], V [Ri−1], F ∗i+1)×Pi)
by Fact 2.22(vi). But PE

i is κi-distributive after the forcing

R(κi−1, κi+1, V [Ri−2], V [Ri−1], F ∗i+1)× Pi)

by Lemma 2.19(iv), therefore we can apply Lemma 2.5(i) to Ḋi and PE
i and con-

clude that PE
i is κi-distributive in V [Ri−1][R(κi−1, κi+1, V [Ri−2], V [Ri−1], F ∗i+1)×

Pi) ∗ Ḋi]. The rest of the proof again follows by Lemma 2.5(i) from Fact 2.22(ii)
that R[i+1,n) is κi-closed and from the induction hypothesis that E(i,n+1) is κi-
closed in V [Rn].

(c) We wish to show that PE
i is κi+1-cc in V [Rn][E(i,n+1)].

The forcing Rn ∗ Ė(i,n+1) is forcing equivalent to

(3.16) Ri−1 ∗ Q̇i−1 ∗ (Q̇i × ṖE
i+1) ∗ Q̇i+1 ∗ Ṙ(i+1,n) ∗ Ė(i+1,n+1).

As both PE
i and Qi−1 are κi+1-Knaster in V [Ri−1], Qi−1 forces that PE

i is κi+1-cc
and thus PE

i is κi+1-cc in V [Ri]. Now, in V [Ri], (Qi × PE
i+1) ∗ Q̇i+1 is forcing

equivalent to

(3.17) (Qi × PE
i+1 × Pi+1) ∗ Ḋi+1,
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where Ḋi+1 is a Qi×Pi+1-name for a forcing notion which is κi+1-closed. As PE
i+1

stays κi+1-distributive after Qi × Pi+1 by Lemma 2.19(iv), Ḋi+1 is still forced to
be κi+1-closed after forcing with PE

i+1 by Lemma 2.5(ii).

Our forcing PE
i is still κi+1-cc after Qi × PE

i+1 × Pi+1 by Lemma 2.19(ii). By the
previous paragraph and Lemma 2.6(ii) it is still κi+1-cc after the forcing (3.17),
which is forcing equivalent to (Qi ∗ Q̇i+1)× PE

i+1.

In V [Ri+2], PE
i+1 is κi+1-distributive and R(i+1,n) is κi+1-closed by Fact 2.22(ii)

and thus R(i+1,n) is still κi+1-closed in V [Ri+2][PE
i+1] by Lemma 2.5(ii). Therefore

our forcing PE
i is κi+1-cc in

(3.18) V [Ri+2][PE
i+1][R(i+1,n)] = V [Rn][PE

i+1]

by Lemma 2.6(ii)

Now it is enough to realize that by the induction hypothesis E(i+1,n+1) is κi+1-

closed in V [Rn] and PE
i+1 is κi+1-distributive and thus E(i+1,n+1) is κi+1-closed

in the model (3.18) by Lemma 2.5(ii). Therefore we can apply Lemma 2.6(ii) to
PE
i and E(i+1,n+1) over the model (3.18), hence PE

i is κi+1-cc in V [Rn][E(i,n+1)].

(ii). Easily follows from (i). �

Corollary 3.4 Let n < ω be given. In V [Rn] the following hold:

(i) For i < n, E(i,n+1) forces Ei+1 is κi+1-cc.
(ii) For i < n+ 1, Ei+1 is κi+1-cc, in particular En+1 is κn+1-cc.

Proof. This is immediate from proof of (c) of the previous lemma using Lemma 2.2
and fact that chain condition is upward closed. �

Lemma 3.5 In V [Rω], E[n,ω) is κn−1-closed for each n > 0.

Proof. Let n > 0 be given. As the product of κn−1-closed forcings is κn−1-closed, it
suffices to show that for each i ≥ n, PE

i = Add(κi, e(κi))
V [Ri−1] is κn−1-closed. PE

i is
defined in V [Ri−1] and it is even κi-closed there, but R[i−1,ω), the tail of the iteration
Rω, is just κi−1-distributive in V [Ri−1]8, and therefore Pi remains κi−1-closed in V [Rω]
and thus at least κn−1-closed. �

Lemma 3.6 For each 0 ≤ n < ω, any κn-sequence of ordinals in V [Rω][E] is already
added by Rn ∗ (Ṗn × Ėn+1).

8To see that R[i−1,ω) is κi−1 -distributive, note that R[i−1,ω) = Qi−1 ∗ R[i,ω) and Qi−1 is κi−1-
distributive and forces that R[i,ω) is κi−1-closed by Fact 2.22(ii).
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Proof. Let n ≥ 0 be given. First note that by Fact 2.22(ii), R[n+2,ω) is κn+1-closed

in V [Rn+2] and E[n+2,ω) is κn+1-closed in V [Rω], therefore R[n+2,ω) ∗ Ė[n+2,ω) is κn+1-

closed in V [Rn+2] and thus also in V [Rn+2][PE
n+1] by Lemma 2.5(ii) as PE

n+1 is κn+1-
distributive in V [Rn+2]. By Corollary 3.4(i), En+1 is κn+1-cc in V [Rn+2][PE

n+1], there-

fore by Lemma 2.6(i), R[n+2,ω) ∗ Ė[n+2,ω) is κn+1-distributive in V [Rn+2][PE
n+1][En+1] =

V [Rn+2][En+2]. Hence any κn-sequence of ordinals is already added by Rn+2 ∗ Ėn+2.
Now, work in V [Rn]. The forcing Qn ∗ Q̇n+1 is forcing equivalent to (Qn × Pn+1) ∗

Ḋn+1, where Ḋn+1 is forced to be κn+1-closed and stays κn+1-closed after forcing with
PE
n+1 by Lemma 2.19(iv) and Lemma 2.5(ii). Now we can apply Lemma 2.6(i) over
V [Rn][Qn × Pn+1 × PE

n+1] to En+1
9 and Dn+1 to show that Dn+1 is κn+1- distributive

in V [Rn][Qn×Pn+1×PE
n+1][En+1] = V [Rn+1][Pn+1][En+2]. Therefore any κn-sequence

of ordinals is already added by Rn+1 ∗ Ṗn+1 ∗ Ėn+2.
Work again in V [Rn]. En+1 is κn+1-cc and Pn+1 × PE

n+1 is κn+1-closed here,
therefore by Lemma 2.19(i) Pn+1 × PE

n+1 is κn+1-distributive in V [Rn][Qn][En+1] =
V [Rn+1][En+1]. Therefore any κn-sequence of ordinals is already in V [Rn+1][En+1].

In V [Rn], Qn is a projection of Pn × Tn, where Tn is κn+1-closed and Pn is κn+1-
Knaster, therefore En+1 × Pn is κn+1-cc and hence Tn stays κn+1-distributive after
forcing with En+1 × Pn by Lemma 2.6(i). It follows that every κn-sequence is added
by Rn ∗ (Ṗn × Ėn+1), as desired. �

Now we can finish the proof of Theorem 3.2:
Proof. (Proof of theorem 3.2.) The theorem follows from Lemma 3.6, Lemma 3.3
and the fact that Pn × En+1 is isomorphic to En+1 over V [Rn]. �

3.3 The tree property

In this section we finish the argument by showing:

Theorem 3.7 Rω ∗ Ė forces that the tree property holds at κn+2, for every n ≥ 0.

We prove the theorem in two subsections and several lemmas. Let us fix some
n ≥ 0, and let us denote κn+2 by κ. We show the tree property at κ.

In V [Rn+2], let En+3|κ be the product
∏
i<n+3 Add(κi, λi)

V [Ri−1], where λi = κ for
e(κi) > κ and λi = e(κi) otherwise.

Lemma 3.8 If Rω ∗ Ė adds a κ-Aronszajn tree, so does Rn+2 ∗ Ėn+3|κ.

Proof. Assume for contradiction that there is a κ-Aronszajn tree T in generic exten-
sion by Rω ∗ Ė. By Lemma 3.6, T has to be added by Rn+2 ∗ (Ṗn+2× Ėn+3) and as this
forcing is isomorphic to Rn+2 ∗ Ėn+3, T is in the generic extension by Rn+2 ∗ Ėn+3.

9Note that En+1 is κn+1-cc in V [Rn] by Corollary 3.4 and it remains κn+1-cc over the present model
by Lemma 2.19(ii).
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Now, work in V [Rn+2]. In this model κ+ = κn+3 = ℵn+3 and by Lemma 3.3, En+3

is κ+-cc. Therefore there is a nice En+3-name Ṫ for T of size κ. Such a nice name
contains at most κ-many conditions in En+3, hence we can restrict each Add(κi, e(κi))
(if necessary) in the product En+3 to Add(κi, Ai), where Ai has size at most κ and it is
determined by the support of conditions in Ṫ . The claim now follows as any bijection
between Ai and κ gives an isomorphism between Add(κi, Ai) and Add(κi, κ). �

Let us denote Rn+2 ∗ Ėn+3|κ by Rn+2 ∗ Ėn+3 in the interest of brevity and let us
keep in mind that all the Cohen forcings in En+3 have length less than or equal to κ.

Let us fix some notation now. Let Gi denote a Qi-generic over V [G0][. . . ][Gi−1],
for each i < n + 2, and xi a PE

i -generic over V [G0][. . . ][Gn+1][x0][. . . ][xi−1] for each
i < n + 3. Let us denote by Vn−1 the modelV [G0][. . . ][Gn−1] and let us write for
brevity x<i instead of x0 × . . .× xi−1 for i ≤ n+ 3.

3.3.1 Lifting an embedding

We wish to lift an appropriate embedding to the model Vn−1[Gn][Gn+1][x<n+3] which
contains the tree T .

In V , using the Laver function Fn+2, let us choose a supercompact embedding
j : V →M such that:

(i) crit(j) = κ, j(κ) > λ and λM ⊆M .10

(ii) j(Fn+2)(κ) is the canonical Rn-name for the canonical Qn-name for Tn+1×PE
n+2.

We are going lift j first to the model Vn−1[Gn][Gn+1][xn+2]. The argument is
essentially the same as in [6], except that we have the extra forcing PE

n+2. Let us
review the basic steps of the lifting.

• As j(Rn) = Rn, we can lift the embedding from Vn−1 toMn−1 = M [G0][. . . ][Gn−1].

• Since j is identity below κ = κn+2, j(Qn)|κ = Qn and we can lift the embedding
further from Vn−1[Gn] to Mn−1[Gn][hn] in Vn−1[Gn][hn], where hn is j(Qn)/Gn-
generic over Vn−1[Gn].

• Now work in Vn−1[Gn][hn] and define:

(3.19) G1
n+1 × xn+2 = {f(κ)Gn | for some p, q, (p, q, f) ∈ Gn ∗ hn}.

By our choice of j, G1
n+1 × xn+2 is Tn+1 × PE

n+2-generic over Vn−1[Gn].

By the projection σ
j(κ)
κ (see the analysis below Remark 2.16), Vn−1[Gn][hn] =

Vn−1[Gn][G1
n+1 × xn+2][h

∗
n] for some j(Qn)/(Gn ∗ (G1

n+1 × xn+2))-generic filter
h∗n.

The family of condition j′′(G1
n+1× xn+2) has a lower bound t = ((∅, pm, qm), tm)

in the product forcing j(Tn+1)×j(PE
n+2) because j(Tn+1×PE

n+2) is j(κ)-directed

10Recall that λ is the limit of the sequence of the supercompact cardinals 〈κn |n < ω〉.
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closed and j(κ) > λ > κn+3. The condition t can be used as a master con-
dition for j and Qn+1 × PE

n+2: if Hn+1 × yn+2 is j(Qn+1) × j(PE
n+2)-generic

over Vn−1[Gn][hn] and Hn+1 contains (∅, pm, qm) and yn+2 contains tm, then
j−1
′′
(Hn+1 × yn+2) generates a Qn+1 × PE

n+2-generic over Vn−1[Gn]. Let us
denote by Gn+1 × xn+2 the Qn+1 × PE

n+2-generic over Vn−1[Gn] generated by

j−1
′′
(Hn+1 × yn+2).

(3.20) Gn+1 × xn+2 = π′′n+1(ρ
′′
n+1Gn+1 ×G1

n+1)× xn+2.

Therefore we can lift the embedding to

(3.21) j : Vn−1[Gn][Gn+1][xn+2]→Mn−1[Gn][hn][Hn+1][yn+2].

Note that the model Mn−1[Gn][hn][Hn+1][yn+2] is the same as Mn−1[Gn][G1
n+1 ×

xn+2][h
∗
n][Hn+1][yn+2].

Now we need to lift j further to En+2. Since j is identity below κ and En+2 =∏
i<n+2 PE

i , j is the identity on conditions in En+2. For each i < n + 2, j(PE
i ) =

PE
i × j(PE

i )|[κ, j(κ))11. Therefore we can lift the embedding further from the model
Vn−1[Gn][Gn+1][xn+2][x<n+2] to Mn−1[Gn][hn][Hn+1][yn+2][y<n+2], where

• y<n+2 denotes y0 × · · · × yn+1 and

• for each i < n+ 2 there is x∗i such that yi = xi × x∗i and yi is j(PE
i )-generic over

Vn−1[Gn][hn][Hn+1][yn+2][y<i].

Let us write the model Mn−1[Gn][hn][Hn+1][yn+2][y<n+2] equivalently as

(3.22) Mn−1[Gn][G1
n+1 × xn+2][h

∗
n][Hn+1][yn+2][y<n+2].

We will rearrange the generics to be able to argue for the tree property in the next
section.

Hn+1 is j(Qn+1)-generic over the Mn−1[Gn][G1
n+1 × xn+2][h

∗
n] and by applying

the projection ρ∗n+1 : j(Qn+1) → j(Pn+1) we get a j(Pn+1)-generic; let us denote it
by H0

n+1 and let us also denote by H1
n+1 a j(Dn+1) = j(Qn+1)/H

0
n+1-generic over

Mn−1[Gn][G1
n+1 × xn+2][h

∗
n][H0

n+1] such that Hn+1 = H0
n+1 ∗ H1

n+1. Now the model
(3.22) is equal to

(3.23) Mn−1[Gn][G1
n+1 × xn+2][h

∗
n][H0

n+1][H
1
n+1][yn+2][y<n+2].

The elementary embedding j is in particular a regular embedding from Pn+1 to
j(Pn+1) and therefore j−1

′′
H0
n+1 yields a generic filter for Pn+1 over Mn−1[Gn][G1

n+1×
xn+2][h

∗
n]. Let us denote this generic by G0

n+1 and let h0n+1 be a generic filter such
that G0

n+1 × h0n+1 = H0
n+1. Therefore the model (3.23) can be decomposed further as

(3.24) Mn−1[Gn][G1
n+1 × xn+2][h

∗
n][G0

n+1][h
0
n+1][H

1
n+1][yn+2][y<n+2].

11Note that j(PE
i )|[κ, j(κ)) is isomorphic to j(PE

i ) therefore for simplification of the notation we will
write j(PE

i ) instead of j(PE
i )|[κ, j(κ))
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Now note that Pn+1 lives already in Mn−1 and as G0
n+1 is generic over the model

Mn−1[Gn][G1
n+1×xn+2][h

∗
n], G0

n+1 and h∗n are mutually generic over Mn−1[Gn][G1
n+1×

xn+2] and also G0
n+1, G

1
n+1 and xn+2 are mutually generic over Mn−1[Gn]. Therefore

we can rearrange model (3.24) as

(3.25) Mn−1[Gn][G0
n+1 ×G1

n+1 × xn+2][h
∗
n][h0n+1][H

1
n+1][yn+2][y<n+2].

Recall that there is the projection πn+1 : Pn+1 × Tn+1 → Qn+1.
12 Therefore we can

rewrite the model (3.25) as

(3.26) Mn−1[Gn][Gn+1][GS][xn+2][h
∗
n][h0n+1][H

1
n+1][yn+2][y<n+2],

where GS is Sn+1-generic over Mn−1[Gn][Gn+1] such that G0
n+1 ×G1

n+1 = Gn+1 ∗GS.
Recall that Sn+1 is the quotient forcing Pn+1 × Tn+1/Gn+1.

Finally, for each i < n + 2, yi = xi × x∗i , hence we can write the model (3.26) as
follows:

(3.27) Mn−1[Gn][Gn+1][GS][xn+2][h
∗
n][h0n+1][H

1
n+1][yn+2][x0 × x∗0][. . . ][xn+1 × x∗n+1],

and again by mutual genericity we can rearrange the generic filters in (3.27) as follows:

(3.28) Mn−1[Gn][Gn+1][x<n+3][x
∗
<n+2][h

0
n+1][GS][h∗n][H1

n+1][yn+2].

3.3.2 The tree property argument

Recall that we assume that T is κ-Aronszajn tree in Vn−1[Gn][Gn+1][x<n+3]. By the
closure properties of the models, we can assume that T is also inMn−1[Gn][Gn+1][x<n+3].
As j(T )�κ = T , T has a cofinal branch in model (3.28). We will argue that the forcing
from Mn−1[Gn][Gn+1][x<n+3] to the model (3.28) cannot add a cofinal branch to T over
Mn−1[Gn][Gn+1][x<n+3]. This will contradict the assumption that T ia a κ-Aronszajn
tree in Vn−1[Gn][Gn+1][x<n+3], and conclude the whole proof.

First we show that there are no cofinal branches in T in the smaller model:

(3.29) Mn−1[Gn][Gn+1][x<n+3][x
∗
<n+2][h

0
n+1][GS][h∗n].

Let us work for a while in Mn−1[Gn][G1
n+1×xn+2]; h

∗
n is j(Qn)/(Gn ∗ (G1

n+1×xn+2))-
generic over this model and there is a projection π∗n : j(Pn) × T∗n → j(Qn)/(Gn ∗
(G1

n+1 × xn+2)). Therefore we can find h∗0n × h∗1n which is j(Pn)× T∗n-generic over

Mn−1[Gn][Gn+1][x<n+3][x
∗
<n+2][GS][h0n+1]

such that π∗n
′′(h∗0n × h∗1n ) = h∗n.

12π′′n+1(G0
n+1 ×G1

n+1) = Gn+1
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In order to argue that there are no cofinal branches through T in the model (3.29),
it is enough to show that there are no such branches in the larger model:

(3.30) Mn−1[Gn][Gn+1][x<n+3][x
∗
<n+2][h

∗0
n ][h0n+1][GS][h∗1n ].13

We divide the proof of the proposition that T has no cofinal branch in (3.30) into
two claims: First we use the κ-square-cc of the Cohen forcings which add the generic
x∗<n+2 × h∗0n × h0n+1 to show that they do not add cofinal branches to T , and then we
use the closure property of forcings which add GS ∗ h∗1n to show that they cannot add
a cofinal branch to T either.

Claim 3.9 j(En+2)× j(Pn)× j(Pn+1) is κ-square-cc in Mn−1[Gn][Gn+1][x<n+3].

Proof. First note that the product j(En+2) × j(Pn) × j(Pn+1) is isomorphic to
j(En+1) × j(Pn+1) as PE

n × Pn is isomorphic to PE
n, and PE

n+1 × Pn+1 is isomorphic
to Pn+1

14. Also note that j(En+1) × j(Pn+1) is isomorphic to its square. Hence to
show that j(En+1) × j(Pn+1) × j(En+1) × j(Pn+1) is κ-cc, it suffices to show that
j(En+1)× j(Pn+1) is κ-cc.

In Mn−1[Gn][Gn+1][xn+2], En+2 × j(En+1) × j(Pn+1) is isomorphic to j(En+1) ×
j(Pn+1); if we show that j(En+1) × j(Pn+1) is κ-cc in this model, we conclude that
that En+2× j(En+1)× j(Pn+1) is κ-cc, i.e. En+2 forces that j(En+1)× j(Pn+1) is κ-cc,
which implies j(En+1)× j(Pn+1) is κ-cc in Mn−1[Gn][Gn+1][x<n+3].

To show that j(En+1) × j(Pn+1) is κ-cc in Mn−1[Gn][Gn+1][xn+2], we proceed as
in the proof of Lemma 3.3(c). �

Since j(En+2) × j(Pn) × j(Pn+1) is κ-square-cc in Mn−1[Gn][Gn+1][x<n+3], there
are no cofinal branches through T in

(3.31) Mn−1[Gn][Gn+1][x<n+3][x
∗
<n+2][h

∗0
n ][h0n+1],

by Fact 2.9

Claim 3.10 In the model Mn−1[Gn][Gn+1][xn+2][yn+1][h
0
n+1] the following hold:

(i) Sn+1 ∗ T∗n is κn+1-closed.
(ii) En+1 × j(En+1)× j(Pn) is κn+1-cc.

Proof. (i) The forcing Sn+1 lives in Mn−1[Gn][Gn+1] and it is κn+1-closed there, but
it is also κn+1-closed in Mn−1[Gn][Gn+1][xn+2] by Lemma 2.5(ii) as PE

n+2 is κn+1-closed
in Mn−1[Gn][Gn+1] by Lemma 3.3(a).

Now, the term forcing T∗n lives inMn−1[Gn][G1
n+1×xn+2] and it is κn+1-closed there.

The model Mn−1[Gn][Gn+1][xn+2][GS] is equal to Mn−1[Gn][G1
n+1 × xn+2 × G0

n+1].

13Note that in contrast to h∗1n , we can put h∗0n before GS as it is generic for the Cohen forcing j(Pn)
and it already lives in Vn−2.

14Note that Pn+1 has length κn+3 hence PE
n+1 × Pn+1 is not isomorphic to PE

n+1 as this has length
less or equal κ
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Therefore to show that T∗n is κn+1-closed here it is enough to show that it stay closed
after forcing with Pn+1, but this holds by Lemma 2.5(ii) as Pn+1 is κn+1-distributive
in Mn−1[Gn][G1

n+1 × xn+2].
15

By the previous two paragraphs, Sn+1∗T∗n is κn+1-closed in Mn−1[Gn][Gn+1][xn+2].
Now, the product of Cohen forcings which add the generic filter yn+1×h0n+1 is isomor-
phic to j(Pn+1). This forcing j(Pn+1) is κn+1-distributive in Mn−1[Gn][Gn+1][xn+2]
by Lemma 3.3(b); therefore the forcing Sn+1 ∗ T∗n remains κn+1-closed in the model
Mn−1[Gn][Gn+1][xn+2][yn+1][h

0
n+1] by Lemma 2.5(ii) as required.

(ii) As before, the product En+1 × j(En+1) × j(Pn) is isomorphic to j(En+1) and
the proof that this forcing is κn+1-cc is as in the proof of Lemma 3.3(c). �

Now we can apply Fact 2.10 to En+1 × j(En+1) × j(Pn) as P and Sn+1 ∗ T∗n as
Q over the model Mn−1[Gn][Gn+1][xn+2][yn+1][h

0
n+1]. Therefore there are no cofinal

branches in T in the model (3.30) and hence neither in the model (3.29).

To finish the proof of the tree property at κ it is enough to show that j(Dn+1) ×
j(Pn+2) cannot add a cofinal branch to T over the model (3.29).

Claim 3.11 In the model Mn−1[Gn][Gn+1][xn+2][yn+1][h
0
n+1][GS][h∗n] the following hold:

(i) j(Dn+1)× j(Pn+2) is κn+1-closed.
(ii) En+1 × j(En+1) is κn+1-cc.

Proof. (i) First, the forcing j(Dn+1) lives in Mn−1[Gn][Gn+1][xn+2][h
0
n+1][GS][h∗n]

and it is κn+1-closed there.

Second, j(Pn+2) lives in Mn−1[Gn][G1
n+1×xn+2][h

∗
n] and it is κn+1-closed there. To

get from modelMn−1[Gn][G1
n+1×xn+2][h

∗
n] toMn−1[Gn][G0

n+1×G1
n+1×xn+2][h

0
n+1][h

∗
n] =

Mn−1[Gn][Gn+1][xn+2][GS][h∗n][h0n+1] it suffices to force with j(Pn+1), which adds a
generic filter for G0

n+1×h0n+1. This forcing lives in Mn−1 and it is κn+1-distributive in
Mn−1[Gn][hn] = Mn−1[Gn][G1

n+1×xn+2][h
∗
n] by Fact 2.22(v) or by Lemma 2.19. There-

fore j(Pn+2) remains κn+1-closed in Mn−1[Gn][Gn+1][xn+2][GS][h∗n][h0n+1] by Lemma
2.5(ii).

As both forcings are κn+1-closed in

(3.32) Mn−1[Gn][Gn+1][xn+2][h
0
n+1][GS][h∗n],

their product j(Dn+1) × j(Pn+2) is κn+1-closed as well. The diference between the
model (3.32) and the model

(3.33) Mn−1[Gn][Gn+1][xn+2][yn+1][h
0
n+1][GS][h∗n]

– where we want to show that j(Dn+1) × j(Pn+2) is κn+1-closed – is just the forcing
j(PE

n+1) which adds the generic filter yn+1. Therefore to finish the proof of the claim

15 Pn+1 is κn+1-distributive in Mn−1[Gn] by Fact 2.22(v) and it stay κn+1-distributive by Lemma
2.5(i) after forcing with Tn+1 × PE

n+2 as this forcing is κn+1-closed in Mn−1[Gn].
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it suffices to show that j(Pn+1) is κn+1-distributive in model (3.32). The model (3.32)
is actually equal to

(3.34) Mn−1[Gn][hn][G0
n+1][h

0
n+1].

By Lemma 2.19(iv), j(Pn+1)×j(PE
n+1) is κn+1-distributive in Mn−1[Gn][hn][G0

n+1].
Therefore j(Pn+1) forces that j(PE

n+1) is κn+1-distributive and so j(PE
n+1) is κn+1-

distributive in the model (3.32). Now we can apply Lemma 2.5(ii) to j(PE
n+1) and

j(Dn+1)× j(Pn+2) over the model (3.32) and conclude that j(Dn+1)× j(Pn+2) is κn+1-
closed in (3.33).

(ii) Recall that the model Mn−1[Gn][Gn+1][xn+2][yn+1][h
0
n+1][GS][h∗n] is equal to

(3.35) Mn−1[Gn][hn][G0
n+1][h

0
n+1][yn+1].

The proof that En+1 × j(En+1) – which is isomorphic to j(En+1) – is κn+1-cc in
this model proceeds exactly as in the proof of Lemma 3.3(c). �

By the previous claim, we can apply Fact 2.10 to En+1×j(En+1) as P and j(Dn+1)×
j(Pn+2) as Q over the model Mn−1[Gn][Gn+1][xn+2][yn+1][h

0
n+1][GS][h∗n] and conclude

that there are no cofinal branches in T in the model (3.28). This is a contradiction
which finishes the proof of Theorem 3.7.

4 Open questions

For the first question below, let us assume e : ω → ω satisfies n < m → e(n) ≤ e(m)
and e(n) > n+ 1 for all n,m < ω.

Question 4.1 Is it possible to have the tree property at every ℵn, 1 < n < ω, with
2ℵn = ℵe(n), n < ω, and 2ℵω = ℵω+m for a prescribed 1 < m < ω? (Note that in our

model we have 2ℵω = ℵω+1.)

A partial answer to this question was given by Honzik and Friedman in [11], who
showed that that 2ℵω = ℵω+2 is consistent with the tree property at every even cardinal
below ℵω. However, this method does not seem to be appropriate for manipulating
the continuum function as they used an iteration of the Sacks forcing, instead of the
Mitchell forcing which allows greater flexibility. Unger [24] extended this result using
the Cummings-Foreman method to show that 2ℵω = ℵω+2 is consistent with the tree
property at every cardinal ℵn below ℵω, for n > 1, with 2ℵn = ℵn+2 for each n < ω.

Question 4.2 In our final model, can we in addition have the tree property at ℵω+2?

Note that this question is still open even with the trivial continuum function; i.e.
with 2ℵn = ℵn+2 for n < ω.
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Question 4.3 Can we control generalized cardinal invariants together with the tree
property? For instance, is it possible to combine the results of Cummings and Shelah
in [7] for dκ and bκ with the tree property at relevant cardinals?
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